Integrální křivka

Tři integrální křivky pro gradientní pole odpovídající diferenciální rovnici dy / dx = x2 − x − 1.

Integrální křivka v matematice je parametrická křivka, která reprezentuje nějaké řešení obyčejné diferenciální rovnice nebo soustavy rovnic. Pokud je diferenciální rovnice reprezentována jako vektorové pole nebo gradientní pole, pak odpovídající integrální křivky jsou tečnami k poli v každém bodě.

Podle povahy a interpretace diferenciálních rovnic nebo vektorového pole jsou integrální křivky známé pod jinými názvy. Ve fyzice jsou integrální křivky elektrického nebo magnetického pole známy jako silokřivky a integrální křivky pro rychlostní pole tekutiny jsou známy jako proudnice. V teorii dynamických systémů se integrální křivky pro diferenciální rovnice, které popisují systém, nazývají trajektorie nebo orbity.

Definice

Předpokládejme, že F je vektorové pole (tj. vektorová funkce s kartézskými souřadnicemi (F1,F2,...,Fn)) a x(t) je parametrická křivka s kartézskými souřadnicemi (x1(t),x2(t),...,xn(t)). Pak x(t) je integrální křivka funkce F, jestliže je řešením následující autonomní soustavy obyčejných diferenciálních rovnic:

d x 1 d t = F 1 ( x 1 , , x n ) d x n d t = F n ( x 1 , , x n ) . {\displaystyle {\begin{aligned}{\frac {\mathrm {d} x_{1}}{\mathrm {d} t}}&=F_{1}(x_{1},\ldots ,x_{n})\\&\vdots \\{\frac {\mathrm {d} x_{n}}{\mathrm {d} t}}&=F_{n}(x_{1},\ldots ,x_{n}).\end{aligned}}}

Takovou soustavu rovnic lze zapsat jedinou vektorovou rovnicí

x ( t ) = F ( x ( t ) ) . {\displaystyle \mathbf {x} '(t)=\mathbf {F} (\mathbf {x} (t)).\!\,}

Tato rovnice přesně říká, že tečný vektor ke křivce v libovolném bodě x(t) křivky je právě vektor F(x(t)), tedy že křivka x(t) je v každém bodě tečnou k vektorovému poli F.

Jestliže dané vektorové pole je Lipschitzovsky spojité, pak z Picardovy–Lindelöfovy věty vyplývá, že pro malý čas existuje jednoznačný tok.

Zobecnění na diferencovatelné variety

Definice

Nechť M je Banachova varieta třídy Cr pro r ≥ 2. TM jako obvykle označuje totální prostor tečného fibrovaného prostoru M s jeho přirozenou projekcí πM : TMM danou vztahem

π M : ( x , v ) x . {\displaystyle \pi _{M}:(x,v)\mapsto x.}

Vektorové pole na M je řez totálního prostoru tečného fibrovaného prostoru TM, tj. zobrazení, které každému bodu variety M přiřadí tečný vektor k M v tomto bodě. Nechť X je vektorové pole na M třídy Cr−1 a nechť pM. Integrální křivka pro X procházející p v čase t0 je křivka α : JM třídy Cr−1, jež je definovaná na otevřeném intervalu J reálné osy R obsahujícím t0 a jež splňuje

α ( t 0 ) = p , {\displaystyle \alpha (t_{0})=p,}
α ( t ) = X ( α ( t ) ) , t J . {\displaystyle \alpha '(t)=X(\alpha (t)),\qquad \forall t\in J.}

Vztah k obyčejné diferenciální rovnici

Výše uvedená definice integrální křivky α pro vektorové pole X, procházející p v čase t0, znamená, že α je lokální řešení obyčejné diferenciální rovnice, resp. její počáteční úlohy

α ( t 0 ) = p , {\displaystyle \alpha (t_{0})=p,}
α ( t ) = X ( α ( t ) ) . {\displaystyle \alpha '(t)=X(\alpha (t)).\,}

Toto řešení je lokální v tom smyslu, že je definované pouze pro časy v J a ne nezbytně pro všechny tt0 (natož pro tt0). Problém důkazu existence a jednoznačnosti integrální křivky je tedy totéž jako hledání řešení obyčejné diferenciální rovnice (počáteční úlohy), a dokazování, že toto řešení je jednoznačné.

Poznámky k časové derivaci

V předchozím textu označuje α′(t) derivaci α v čase t, neboli „směr, kterým α ukazuje“ v čase t. Z abstraktnějšího úhlu pohledu to je Fréchetova derivace:

( d t α ) ( + 1 ) T α ( t ) M . {\displaystyle (\mathrm {d} _{t}\alpha )(+1)\in \mathrm {T} _{\alpha (t)}M.}

Ve speciálním případě, kdy M je nějaká otevřená podmnožina Rn, se jedná o známou derivaci

( d α 1 d t , , d α n d t ) , {\displaystyle \left({\frac {\mathrm {d} \alpha _{1}}{\mathrm {d} t}},\dots ,{\frac {\mathrm {d} \alpha _{n}}{\mathrm {d} t}}\right),}

kde α1, ..., αn jsou souřadnice α vzhledem k obvyklým souřadnicovým směrům.

Totéž lze formulovat ještě abstraktněji v pojmech indukovaných zobrazení. Všimněme si, že totální tečný fibrovaný prostor TJ k J je triviální fibrovaný prostor J × R a že existuje kanonický řez ι v tomto prostoru takový, že ι(t) = 1 (nebo přesněji (t, 1) ∈ ι) pro všechny tJ. Křivka α zavádí zobrazení fibrovaných prostorů (bundle map) α : TJ → TM tak, že následující diagram komutuje:

Pak časová derivace α′ je složení α′ = α o ι a α′(t) je její hodnotou v některém bodě t ∈ J.

Odkazy

Reference

V tomto článku byl použit překlad textu z článku Integral curve na anglické Wikipedii.

  • LANG, Serge. Differential manifolds. Reading, Mass.–London–Don Mills, Ont.: Addison-Wesley Publishing Co., Inc., 1972. 

Zdroj datcs.wikipedia.org
Originálcs.wikipedia.org/wiki/Integrální_křivka
Zobrazit sloupec 

Kalkulačka - Výpočet

Výpočet čisté mzdy

Důchodová kalkulačka

Přídavky na dítě

Příspěvek na bydlení

Rodičovský příspěvek

Životní minimum

Hypoteční kalkulačka

Povinné ručení

Banky a Bankomaty

Úrokové sazby, Hypotéky

Směnárny - Euro, Dolar

Práce - Volná místa

Úřad práce, Mzda, Platy

Dávky a příspěvky

Nemocenská, Porodné

Podpora v nezaměstnanosti

Důchody

Investice

Burza - ČEZ

Dluhopisy, Podílové fondy

Ekonomika - HDP, Mzdy

Kryptoměny - Bitcoin, Ethereum

Drahé kovy

Zlato, Investiční zlato, Stříbro

Ropa - PHM, Benzín, Nafta, Nafta v Evropě

Podnikání

Města a obce, PSČ

Katastr nemovitostí

Katastrální úřady

Ochranné známky

Občanský zákoník

Zákoník práce

Stavební zákon

Daně, formuláře

Další odkazy

Auto - Cena, Spolehlivost

Registr vozidel - Technický průkaz, eTechničák

Finanční katalog

Volby, Mapa webu

English version

Czech currency

Prague stock exchange


Ochrana dat, Cookies

 

Copyright © 2000 - 2024

Kurzy.cz, spol. s r.o., AliaWeb, spol. s r.o.