Integrál

Integrál je jeden ze základních pojmů matematiky. Spolu s derivací tvoří dvě hlavní operace matematické analýzy, integrace je inverzní operace derivace. Pojmem integrál rozumíme určitý nebo neurčitý integrál. Jedná se o dvě odlišné koncepce, které spolu úzce souvisí. Slovo integrál zavedl Johann Bernoulli. Znak integrálu ∫ pochází z latinského slova ſumma (součet) psaného s dlouhým s. Toto značení vytvořil Gottfried Leibniz. V geometrii se používají tzv. křivkové resp. plošné integrály umožňující určit délku křivky či obsah plochy křivkou uzavřené resp. povrch či objem (Gaussova věta) trojrozměrných útvarů. Principy integrování byly poprvé formulovány nezávisle na sobě Isaacem Newtonem a Gottfriedem Leibnizem na konci 17. století, kteří nezávisle formulovali základní větu analýzy, díky níž spojili diferenciální a integrální počet.

Neurčitý integrál

Podrobnější informace naleznete v článku Primitivní funkce.

Neurčitý integrál funkce je množina jejích primitivních funkcí, lišících se v hodnotě přičítané konstanty. Používá se zejména k výpočtu určitého integrálu s využitím základní věty integrálního počtu a při řešení diferenciálních rovnic. Neurčitý integrál je opak derivace a proto umožňuje z rychlosti měnící se veličiny určit časový průběh této veličiny. Ke každé funkci f {\displaystyle f} spojité na intervalu ( a , b ) {\displaystyle (a,b)} existuje na tomto intervalu funkce primitivní. Neurčitý integrál zapisujeme:

F ( x ) = f ( x ) d x + C {\displaystyle F(x)=\int f(x)\,\mathrm {d} x\,+\,C}

kde C {\displaystyle C} je libovolná konstanta a d x {\displaystyle \mathrm {d} x} označuje infinitezimální hodnotu proměnné, podle které se integruje. Pokud by funkce F {\displaystyle F} byla posunutá o konstantu C {\displaystyle C} nahoru nebo dolů, její derivace bude pořád stejná. Výpočet neurčitého integrálu funkce f {\displaystyle f} je úloha hledání její primitivní funkce F {\displaystyle F} , jejíž derivace je integrovaná funkce:

d d x F ( x ) = d d x f ( x ) d x + d d x C = f ( x ) {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} x}}F(x)={\frac {\mathrm {d} }{\mathrm {d} x}}\int f(x)\,\mathrm {d} x\,+\,{\frac {\mathrm {d} }{\mathrm {d} x}}\,C=f(x)}

Při hledání primitivní funkce se používají různé integrační techniky, například integrace per partes, substituční metoda, rozklad na parciální zlomky.

Určitý integrál

Integrál jako plocha pod křivkou
Související informace naleznete také v článku Určitý integrál.

Určitý integrál lze chápat geometricky jako obsah plochy pod křivkou danou grafem nezáporné funkce na daném intervalu. Určitý integrál spojité funkce f {\displaystyle f} na intervalu a , b {\displaystyle \langle a,b\rangle } zapisujeme užitím základní věty integrálního počtu:

a b f ( x ) d x = F ( b ) F ( a ) {\displaystyle \int _{a}^{b}\!f(x)\,\mathrm {d} x=F(b)-F(a)}

kde a {\displaystyle a} a b {\displaystyle b} jsou integrační meze, tj. výsledkem výpočtu určitého integrálu je číslo, na rozdíl od neurčitého integrálu, kde výsledkem výpočtu je funkce. Existují různé definice určitého integrálu podle formulace integrálních součtů, tj. existují různé určité integrály, např.:

Jednotlivé integrály se liší množinou funkcí, které jsou ve smyslu jednotlivých definic integrovatelné. Pokud však je funkce integrovatelná ve smyslu více definic, pak je hodnota integrálu stejná, definice jsou pak na daných definičních oborech ekvivalentní[1], v praxi a v základních kurzech matematiky se zpravidla pod pojmem určitý integrál rozumí Newtonův nebo Riemannův integrál.

Vztah mezi určitým a neurčitým integrálem

Animace souvislosti plochy pod grafem funkce (určitý integrál) a primitivní funkcí (neurčitý integrál).
Podrobnější informace naleznete v článcích Základní věta integrálního počtu a Riemannův integrál.
  • Určitý integrál zpravidla počítáme pomocí základní věty integrálního počtu jako změnu primitivní funkce na uvažovaném intervalu. V tomto smyslu je možno určitý integrál vyjadřovat pomocí neurčitého integrálu.
  • Vztahem F ( x ) = a x f ( t )   d t {\displaystyle F(x)=\int _{a}^{x}f(t)\ \mathrm {d} t} je možno definovat primitivní funkci k funkci f {\displaystyle f} pomocí Riemannova integrálu. Toto se využívá v případech, kdy primitivní funkce není elementární funkcí, například integrálsinus. V takovém případě bývá obvyklé použít k výpočtu integrálu numerickou integraci.

Zobecnění určitého integrálu

Nevlastní integrál

Podrobnější informace naleznete v článku Nevlastní integrál.

Určitý integrál, ve kterém je buď neohraničený interval (alespoň jedna z integračních mezí v nekonečnu) nebo neohraničená funkce (nespojitá nebo jdoucí v daném intervalu do nekonečna).

Křivkový integrál

Podrobnější informace naleznete v článku Křivkový integrál.

Křivkový integrál je integrál skalárního nebo vektorového pole počítaný podél křivky.

Plošný integrál

Podrobnější informace naleznete v článku Plošný integrál.

Plošný integrál je integrál skalárního nebo vektorového pole počítaný podél křivky ohraničující nějakou plochu.

Vícerozměrný integrál

Podrobnější informace naleznete v článku Vícerozměrný integrál.

Integraci funkce více proměnných probíhá vždy na určité oblasti Ω {\displaystyle \displaystyle \Omega } . Je-li f ( x 1 , x 2 , . . . , x n ) {\displaystyle \displaystyle f(x_{1},x_{2},...,x_{n})} funkcí n {\displaystyle \displaystyle n} nezávisle proměnných, pak její integrál na určité n {\displaystyle \displaystyle n} -rozměrné oblasti Ω {\displaystyle \displaystyle \Omega } označujeme jako n {\displaystyle n} -rozměrný integrál, přičemž jej zapíšeme některým z následujících způsobů:

Ω f ( x 1 , x 2 , , x n ) d Ω = Ω f ( x 1 , x 2 , , x n ) d x 1 d x 2 d x n = Ω f ( x 1 , x 2 , , x n ) d n x {\displaystyle {\iint \cdots \int }_{\Omega }f(x_{1},x_{2},\ldots ,x_{n})\,\mathrm {d} \Omega ={\iint \cdots \int }_{\Omega }f(x_{1},x_{2},\ldots ,x_{n})\,\mathrm {d} x_{1}\mathrm {d} x_{2}\cdots \mathrm {d} x_{n}={\iint \cdots \int }_{\Omega }f(x_{1},x_{2},\ldots ,x_{n})\,\mathrm {d} ^{n}x} .

Počet integračních znaků {\displaystyle \int } odpovídá počtu proměnných, přes které integrujeme. Je-li ze zápisu integrálu zjevné, že se jedná o vícerozměrný integrál, pak zapisujeme pouze jeden integrační znak:

Ω f ( x 1 , x 2 , , x n ) d Ω {\displaystyle \int _{\Omega }f(x_{1},x_{2},\ldots ,x_{n})\,\mathrm {d} \Omega \,} .

Vícerozměrné integrály se obvykle řeší převodem na vícenásobnou integraci pomocí Fubiniovy věty. Mezi vícerozměrné integrály řadíme např. plošný a objemový integrál.

Komplexní integrál

V komplexní rovině se užívají křivkové integrály. Pokud tyto integrály probíhají po uzavřené křivce ležící v komplexní rovině, lze je vypočítat pomocí reziduové věty, Cauchyova vzorce nebo Cauchyovy věty.

Aplikace

Podrobnější informace naleznete v článku Aplikace integrálu.

Pomocí určitého integrálu lze určit např. obsah rovinného obrazce, délku oblouku křivky, povrch nebo objem rotačního tělesa. Integrály se využívají při řešení diferenciálních rovnic či v teorii pravděpodobnosti. Ve fyzice integrál můžeme použít při výpočtu např. momentů hybnosti, momentů setrvačnosti, těžiště hmotného tělesa, či výpočtu vykonané práce podél dráhy, rovné křivkovému integrálu vektoru síly podle dráhy.

Odkazy

Reference

  1. Věta pro Riemannův integrál a Lebesgueův integrál, V. I. Bogachev: Measure Theory, Springer. - http://web.science.upjs.sk/jozefdobos/wp-content/uploads/2012/04/nevlastny.pdf, slovensky

Literatura

Související články

Externí odkazy


Zdroj datcs.wikipedia.org
Originálcs.wikipedia.org/wiki/Integrál
Zobrazit sloupec 

Kalkulačka - Výpočet

Výpočet čisté mzdy

Důchodová kalkulačka

Přídavky na dítě

Příspěvek na bydlení

Rodičovský příspěvek

Životní minimum

Hypoteční kalkulačka

Povinné ručení

Banky a Bankomaty

Úrokové sazby, Hypotéky

Směnárny - Euro, Dolar

Práce - Volná místa

Úřad práce, Mzda, Platy

Dávky a příspěvky

Nemocenská, Porodné

Podpora v nezaměstnanosti

Důchody

Investice

Burza - ČEZ

Dluhopisy, Podílové fondy

Ekonomika - HDP, Mzdy

Kryptoměny - Bitcoin, Ethereum

Drahé kovy

Zlato, Investiční zlato, Stříbro

Ropa - PHM, Benzín, Nafta, Nafta v Evropě

Podnikání

Města a obce, PSČ

Katastr nemovitostí

Katastrální úřady

Ochranné známky

Občanský zákoník

Zákoník práce

Stavební zákon

Daně, formuláře

Další odkazy

Auto - Cena, Spolehlivost

Registr vozidel - Technický průkaz, eTechničák

Finanční katalog

Volby, Mapa webu

English version

Czech currency

Prague stock exchange


Ochrana dat, Cookies

 

Copyright © 2000 - 2024

Kurzy.cz, spol. s r.o., AliaWeb, spol. s r.o.